Monday, 18 August 2014

Getting started with Informix TimeSeries



In this article I want to throw some light on fundamentals of IBM Informix TimeSeries. This shall help grasp TimeSeries concept better and help understand applicability of the technology. With my limited exposure to market I see that it is definitely suitable for any kind of sensor data management or Internet of Things, but certainly there are other areas like stock market, and can be many more where it might bring a lot of value.

To understand theoretical concept of Informix TimeSeries implementation, I recommend reading this article http://www.dbta.com/Editorial/Trends-and-Applications/Managing-Time-Series-Data-with-Informix-76454.aspx

And now you can use following simple shell script to understand how the basic objects of TimeSeries viz. Calendar, Container, TimeSeries, Virtual Table Interface (VTI) and SQL API. It takes no more than 10min to run the shell script and understand Informix TimeSeries syntax.

1.      The shell script is well tested on Linux and might need minor changes on Unix platform. It won’t work on Windows platform. However, you can copy paste SQL statements high lighted in blue in following section and execute on windows manually.
2.      Ensure that Informix engine is online. You can use “onstat –“  command
3.      Download the zip file (size 10KB) from following link:
https://drive.google.com/file/d/0BxkZj8z_XU_XajdUVXBMbDhUZlE/edit?usp=sharing
4.      Unzip the file on linux/Unix machine under some test directory
5.      You might need to execute dos2unix command for each file before execution
6.      Execute main.sh and just follow the instructions.

Output of shell script should look like this :

################################################################
Welcome to TimeSeries demo.
This program has 2 sections a) setup database b) perform data retrieval queries.
If You have already performed steps for (a) and interested in section (b) only, please enter 1 else enter 2:

2
################################################################
Cleaning up old files...
Clean up is over. Please presss Enter to continue

################################################################
Creating dbspace dbspace1  (This should be executed by connecting to sysadmin database)
execute function admin('create dbspace','dbspace1',
'/data/IBM/informixdemo/demo_on/dbspace1','100 MB','0');
4bede8c0 5        0x60001    5        1        2048     N  BA    informix dbspace1
4c5e5078 5      5      0          51200      45611                 PO-B-- /data/IBM/informixdemo/demo_on//dbspace1

dbspace creation .. passed
Please press Enter to continue
################################################################
Creating database demo_db
(This should be executed by connecting to sysadmin database)
drop database if exists demo_db;
create database demo_db in dbspace1 with buffered log;

database creation .. passed
Please press Enter to continue

################################################################
Creating row type row1 (From here all the queries should be performed by connecting to demo_db)
create row type row1
(
 time_stamp datetime year to fraction(5),
 value decimal(7,2)
);

Row creation .. passed
Please press Enter to continue

################################################################
Creating calendars cal1min and cal15min
execute procedure ifx_allow_newline('t');
insert into calendarpatterns values
(
 'min','{1 on},minute'
);
insert into calendarpatterns values
(
 'min15','{1 on ,14 off},minute'
);
insert into CalendarTable
(
 c_name,c_calendar
)
values ('calmin','startdate(2011-12-01 00:00:00.00000),
pattstart(2011-12-01 00:00:00.0000),pattname(min)');

insert into CalendarTable
(
 c_name,c_calendar
)
values ('cal15min','startdate(2011-12-01 00:00:00.00000),
pattstart(2011-12-01 00:00:00.0000),pattname(min15)');

Calendar creation .. passed
Please press Enter to continue

################################################################
Creating table test_ts
create table test_ts
 (
   tagid char(20),
   series timeseries(row1),
   PRIMARY KEY (tagid)
) in dbspace1;
alter table test_ts
lock mode(row);

Table creation .. passed
Please press Enter to continue

################################################################
Creating container tscont1
execute procedure tscontainercreate('tscont1', 'dbspace1','row1',1024,1024);

Container creation .. passed
Please press Enter to continue

################################################################
Creating virtual table test_v
execute procedure TSCreateVirtualTab('test_v','test_ts');

Virtual table creation .. passed
Please press Enter to continue

################################################################
Initializing all tags tag1 to tag5
insert into test_ts values('tag1',
TSCreate('calmin', '2011-12-01 00:02:00.00000',0,0,0,'tscont1'));
insert into test_ts values('tag2',
TSCreate('calmin', '2011-12-01 00:02:00.00000',0,0,0,'tscont1'));
insert into test_ts values('tag3',
TSCreate('calmin', '2011-12-01 00:02:00.00000',0,0,0,'tscont1'));
insert into test_ts values('tag4',
TSCreate('calmin', '2011-12-01 00:02:00.00000',0,0,0,'tscont1'));
insert into test_ts values('tag5',
TSCreate('calmin', '2011-12-01 00:02:00.00000',0,0,0,'tscont1'));

Tags initialization .. passed
Please press Enter to continue

################################################################
Bulkload for tag1
update test_ts set series = bulkload(series,'data.unl')
where tagid='tag1';

Data bulkload for tag tag1 .. passed
Please press Enter to continue

################################################################
Load data for tag2 to tag5 through VTI
load from load.unl insert into test_v;

Loading data through VTI .. passed
Please press Enter to continue

Congratulations!!! Your setup is successful. Please press Enter to refresh the screen and be ready to see certain data retrieval queries

################################################################
Simple select on VTI table to see range of data
select * from test_v where tagid='tag1'
and time_stamp between '2011-12-01 01:00:00.00000' and
'2011-12-01 01:10:00.00000';
Press enter to see output

Database selected.

tagid                time_stamp                    value

tag1                 2011-12-01 01:00:00.00000    108.00
tag1                 2011-12-01 01:01:00.00000    109.00
tag1                 2011-12-01 01:02:00.00000    100.00
tag1                 2011-12-01 01:03:00.00000    101.00
tag1                 2011-12-01 01:04:00.00000    102.00
tag1                 2011-12-01 01:05:00.00000    103.00
tag1                 2011-12-01 01:06:00.00000    104.00
tag1                 2011-12-01 01:07:00.00000    105.00
tag1                 2011-12-01 01:08:00.00000    106.00
tag1                 2011-12-01 01:09:00.00000    107.00
tag1                 2011-12-01 01:10:00.00000    108.00

11 row(s) retrieved.

Database closed.

Press enter to continue

################################################################
Simple select on TimeSeries table to see range of data
select 'tag1',
clip(series,'2011-12-01 01:00:00.00000'::datetime year to fraction(5) ,
'2011-12-01 01:10:00.00000'::datetime year to fraction(5))
from test_ts where tagid='tag1';
Press enter to see output

Database selected.

(constant)    tag1
(expression)  origin(2011-12-01 01:00:00.00000), calendar(calmin), container(ts
              cont1), threshold(0), regular, [(108.00   ), (109.00   ), (100.00
                 ), (101.00   ), (102.00   ), (103.00   ), (104.00   ), (105.00
                 ), (106.00   ), (107.00   ), (108.00   )]

1 row(s) retrieved.


Database closed.


Press enter to continue

################################################################
Select on TimeSeries table and output in traditional relational form
select 'tag1',time_stamp,value from
table (( select tssettolist(clip(series,
'2011-12-01 01:00:00.00000'::datetime year to fraction(5),
'2011-12-01 01:10:00.00000'::datetime year to fraction(5)))
::list(row1 not null)
from test_ts
where tagid='tag1'));
Press enter to see output

Database selected.

(constant) time_stamp                    value

tag1       2011-12-01 01:00:00.00000    108.00
tag1       2011-12-01 01:01:00.00000    109.00
tag1       2011-12-01 01:02:00.00000    100.00
tag1       2011-12-01 01:03:00.00000    101.00
tag1       2011-12-01 01:04:00.00000    102.00
tag1       2011-12-01 01:05:00.00000    103.00
tag1       2011-12-01 01:06:00.00000    104.00
tag1       2011-12-01 01:07:00.00000    105.00
tag1       2011-12-01 01:08:00.00000    106.00
tag1       2011-12-01 01:09:00.00000    107.00
tag1       2011-12-01 01:10:00.00000    108.00

11 row(s) retrieved.


Database closed.

Press enter to continue

################################################################
Roll up data to 15min cycle using aggregateby function
SELECT *
FROM TABLE (( SELECT TSSetToList(AggregateBy('avg($value)', 'cal15min',
series, 0, '2011-12-01 00:00'::datetime year to minute,
'2011-12-01 2:30'::datetime year to minute))::list(row1 not null)
FROM test_ts
WHERE tagid='tag1'));
Press enter to see output

Database selected.

time_stamp                    value

2011-12-01 00:15:00.00000    103.64
2011-12-01 00:30:00.00000    105.00
2011-12-01 00:45:00.00000    104.00
2011-12-01 01:00:00.00000    105.00
2011-12-01 01:15:00.00000    104.00
2011-12-01 01:30:00.00000    105.00
2011-12-01 01:45:00.00000    104.00
2011-12-01 02:00:00.00000    105.00
2011-12-01 02:15:00.00000    104.00
2011-12-01 02:30:00.00000    105.00

10 row(s) retrieved.

Database closed.

Press enter to continue


Tuesday, 12 August 2014

Informix TimeSeries in Wind Power Generation



Writing about Informix TimeSeries after long time. I have been working on numerous projects in energy sector and vehicle tracking systems where I found great acceptability from solution vendors as well as customers for TimeSeries. The TimeSeries with all its capabilities finding great significance in wider space called sensor data management and Internet of Things (IoT) and IBM is continuing investing a lot in TimeSeries development. In recent few releases IBM development concentrated on performance improvement, storage saving, ease of administration and better interoperability with other features of Informix.

Recently IBM India has been successful penetrating Wind Power energy generation sector with some major players where Informix TimeSeries is playing critical role in managing operational data collected from SCADA system. Similarly lots of ISVs working in IoT space like Vehicle Tracking System, Energy Management software has started adopting Informix widely.

One of the major Wind Power generation company in India has been able to save 1.2 million USD per year on 600MW portfolio.

Disclaimer: The postings on this site are my own and don't necessarily represent IBM's positions, strategies or opinions